A Fast and Efficient Model for Learning to Reach

نویسندگان

  • Ganghua Sun
  • Brian Scassellati
چکیده

This paper proposes a self-supervised model which enables a humanoid robot to learn to reach to visual targets. Only 400 training samples are used to learn a forward kinematic model of the 6 degree-of-freedom (DOF) arm. The forward model is represented compactly with just 150 hidden neurons and enables high accuracy reaching in real-time. We provide an optimization process for the learning parameters and a careful analysis of reaching errors. An extension of the model is presented to address additional DOFs in the neck. The consistency of the model with physiological and psychological observations is elaborated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Particle Swarm Optimizer Based on a Novel Class of Fast and Efficient Learning Factors Strategies

The particle swarm optimizer (PSO) is a population-based metaheuristic optimization method that can be applied to a wide range of problems but it has the drawbacks like it easily falls into local optima and suffers from slow convergence in the later stages. In order to solve these problems, improved PSO (IPSO) variants, have been proposed. To bring about a balance between the exploration and ex...

متن کامل

The Design and Construction of an Efficient Model for Teaching Science in Junior High School

The Design and Construction of an Efficient Model for Teaching Science in Junior High School M. Amaani Tehrani  M. Aliasgari, Ph.D. E. Abbaasi, Ph.D. To construct an efficient teaching model for high school science, in addition to the use of the personal experiences of the author and a literature review, the findings of the recent international studies were also utilize...

متن کامل

A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System

In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...

متن کامل

Calculation of One-dimensional Forward Modelling of Helicopter-borne Electromagnetic Data and a Sensitivity Matrix Using Fast Hankel Transforms

The helicopter-borne electromagnetic (HEM) frequency-domain exploration method is an airborne electromagnetic (AEM) technique that is widely used for vast and rough areas for resistivity imaging. The vast amount of digitized data flowing from the HEM method requires an efficient and accurate inversion algorithm. Generally, the inverse modelling of HEM data in the first step requires a precise a...

متن کامل

Two Novel Learning Algorithms for CMAC Neural Network Based on Changeable Learning Rate

Cerebellar Model Articulation Controller Neural Network is a computational model of cerebellum which acts as a lookup table. The advantages of CMAC are fast learning convergence, and capability of mapping nonlinear functions due to its local generalization of weight updating, single structure and easy processing. In the training phase, the disadvantage of some CMAC models is unstable phenomenon...

متن کامل

Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features

Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • I. J. Humanoid Robotics

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2005